

SETU Carlow

HyperLedger Fabric
Auctioning System – Final Report

Student - Oisin Hickey – C00247185
4-15-2023

 1

Table of Contents
Table Of Figures .. 1

Abstract ... 3

Introduction .. 4

Installation Instructions ... 4

Desktop ... 4

WebApp .. 4

Description Of Submitted Project .. 4

Backend .. 4

Consensus Rules ... 5

Authentication .. 5

Database Layout ... 6

Endpoints Summary ... 7

Front-end .. 8

Front-end Components .. 9

Conformance To Project Brief .. 12

Functionality ... 12

Usability .. 12

Reliability .. 13

Performance ... 13

Supportability ... 13

Reflection .. 14

Personal Experience ... 14

Personal Learning ... 23

Project Review .. 23

Acknowledgements .. 24

References .. 26

Table Of Figures
Figure 1: Wallet code used which implements bip39 ... 5

Figure 2: Sample JSON chain data ... 7

Figure 3:Wallet Mnemonic code ... 10

Figure 4: Blocks Component ... 11

Figure 5: Conversation with Ewan Duff ... 14

Figure 6: Hyperledger Discord... 15

Figure 7: Conversation with Kentbull .. 16

Figure 8: Cert Errors .. 16

 2

Figure 9: Port Errors .. 17

Figure 10: Test replacement chain .. 17

Figure 11: Original P2P class ... 19

Figure 12: Final P2P class .. 23

 3

Abstract
This document outlines the finished project derived from the previously written functional

specification. The system implemented is a full-functioning blockchain auctioning system.

Throughout this document, I will talk about the development process, the problems I faced,

the things I am proud of and the things I would change. I will also demonstrate the

functionality of the project.

 4

Introduction
The finished system has been titled "Auction chain". Auction chain syncs with a root node,

allowing users to transact currency, create auctions and place bids. Users can also query the

system for other information, such as the history of a particular item or Wallet.

Installation Instructions
The entire project source is hosted on a GitHub repository at

https://github.com/ironic833/4th-Year-Project-Blockchain-From-Scratch or accessed via the

industry showcase. There are two different ways you can run the code on your computer:

Desktop

Download the suitable pre-packaged release from the GitHub releases section to run the

application on your desktop. The main compiled release is for Windows.

A simple double click will run the application. Please note that you may need to ensure

firewall, proxy and VPN rules do not conflict with the project's P2P system. Linux and

macOS editions can be compiled using "npx electron-builder" with the appropriate flags used

for platform and architecture. More details here: (Multi Platform Build - Electron-Builder, n.d.)

WebApp

The system can also be run as a web application on your local machine. You need NPM

installed to run this.

1. Clone the repositories “ServerDemoVersion" branch.

2. Navigate to the root project directory. You should see a package.json file in this

directory.

3. Run "npm run dev" to run the web app version of the software.

4. You may also run “npm run dev-peer"; however, this is deprecated after certain

updates and changes and may only be used in previous commits.

Description Of Submitted Project
The finished system uses a GUI front-end and an API backend to allow it to interact with a

blockchain. Users register to the system using a BIP39 phrase. If they do not have one, they

can make a fresh wallet and copy its wallet recovery phrase. Upon authentication to the

system, they may view the transaction pool, make an auction, place a bid, send currency, or

view the history of any wallet or item ID. An address book is also available, which derives its

wallets from blocks on the chain.

Upon a user authenticating onto the chain, their external IP address is broadcasted to other

peers. However, the original root node is prioritised as the users' individual firewall and

security settings may cause sync problems. The front is built using React and is web-friendly,

but I packaged it in EXE format for my distribution version. To package for MacOS, a Mac

computer is needed, which I did not have access to. A web version also runs for public usage

and demonstration purposes via Heroku.

Backend
The backend of the system uses an API built on express with body-parser, history and parcel

bundler installed as middleware. Body-parser handles the translation of the body of node.js

https://github.com/ironic833/4th-Year-Project-Blockchain-From-Scratch

 5

requests to endpoints and other web services. History is used to keep track of session history.

Parcel bundler is used for packaging the overall web application for production. Finally,

request is also installed to handle sending HTTP requests to other web services.

Consensus Rules

Several consensus rules are implemented to allow the chain's validity to be verified on the

broadcast. To replace the existing blockchain with a new blockchain, the following conditions

must be met:

• The length of the new blockchain must be longer than the current blockchain.

• The block must only contain one reward

• The reward amount must match the mining award amount exactly

• The transactions in the block must be valid, meaning their signatures must be correct

• The new blockchain must be valid according to the isValidChain() method. This

means that:

❖ Each blocks difficulty must not be too high or too low

❖ The lastHash property must equal the actual hash of the last block

❖ The block's hash must equal its actual hash value.

If any of these conditions are not met, the existing blockchain will not be replaced with the

new one, and an error will be displayed in the console. This is part of why transactions go to

the pool first, as it stops entire chains from being invalidated entirely and constantly.

Authentication

I used BIP39(Bip39 - Npm, n.d.) for authentication. BIP39 meant the system would not have

to store user authentication details on the chain and instead works by taking in a 12 or 24-

word phrase and generating the same public and private key from scratch every time.

The code I wrote defines a Wallet class, which represents a valid wallet structure and its

methods. In addition, the Wallet class has a constructor that takes an optional mnemonic

parameter.

Figure 1: Wallet code used which implements bip39

 1. class Wallet {
 2. constructor(mnemonic) {
 3. if (mnemonic) {
 4. const seed = bip39.mnemonicToSeedSync(mnemonic);
 5. this.masterNode = hdkey.fromMasterSeed(seed);
 6. } else {
 7. const seed = crypto.randomBytes(32);
 8. this.masterNode = hdkey.fromMasterSeed(seed);
 9. mnemonic = bip39.entropyToMnemonic(seed);
10. console.log(`Generated mnemonic: ${mnemonic}`);
11. }
12. this.balance = STARTING_BALANCE;
13. this.path = "m/0'/0'/0'";
14. this.node = this.masterNode.derive(this.path);
15. this.keyPair = ec.keyFromPrivate(this.node.privateKey);
16. this.publicKey = this.keyPair.getPublic().encode('hex');
17. this.mnemonic = mnemonic;
18. }

 6

If a mnemonic is provided, the constructor uses the bip39 package to convert the mnemonic

into a seed and then creates a hdkey (Hdkey - Npm, n.d.) object using the fromMasterSeed

method from the hdkey package. The hdkey object generates a private key and public key

pair using the ec (elliptic curve) package. Finally, the publicKey property of the Wallet object

is set to the hex-encoded string representation of the derived public key.

If a mnemonic is not provided, the constructor generates a random 32-byte seed using the

crypto package, creates a hdkey object using the fromMasterSeed method from the hdkey

package, and generates a mnemonic string representation of the seed using the bip39

package, which is outputted to the console.

The Wallet object also has a balance property, initially set to a constant value defined in the

config file STARTING_BALANCE.

Finally, the Wallet object has a path property set to a specific derivation path m/0'/0'/0' and a

node property derived from the hdkey object using the derived method with the path as the

argument. The keyPair property is set to the key pair derived from the node. The mnemonic

property is set to the mnemonic passed in as an argument or generated randomly if not

provided.

The bip39 package is only focused on translating the phrase to entropy, with hdkey being

what creates the Wallet. It is also worth noting that the private key is generated first, and the

public key is then derived from it instead of both keys being generated simultaneously.

The derivation path used is m/0'/0'/0'. This path specifies the hierarchical deterministic (HD)

wallet derivation path, and it is a specific path within the HD wallet derivation structure

defined by BIP (Bitcoin Improvement Proposal) 44.

In this path, m stands for master, and the apostrophes denote hardened derivation, which

means that child keys cannot be derived from the parent public key. The 0 values represent

the account level, and the 0' value represents the external chain level of the Wallet. The last 0'

value represents the index of the first receiving address in the external chain of the Wallet.

I chose this path as I had stumbled across it when researching improvement proposal 39;

however, other paths are available. (What Are BIP39, BIP32, and BIP44? - Vault12, n.d.)

I originally tried and only used the bip39 package using example code from GitHub

(Bitcoinjs/Bip39: JavaScript Implementation of Bitcoin BIP39: Mnemonic Code for Generating

Deterministic Keys, n.d.). However, I kept encountering errors, and upon implementing hdkey

into parts of the code, I eventually achieved a successful output.

I used the test phrase “device true list zone amateur multiply vault guitar category quick

traffic call expire long enable rebel forward sport yard unique hobby sense path earth" to

derive the public key:

042c5f15fda98db5ce4ab4f9c16b07e18eadcbf749d3ee490a34381e5eaeee52ab384b2434dc0e6

27df023d0ab4561861234ca75029af6a9695b5cd637487c3276 for testing.

Database Layout

I knew that the block itself would be stored for the database layout, so it must have a

consistent, verifiable structure. In each block, there were naturally going to be different kinds

 7

of transactions due to different kinds of actions submitted to the chain. Initially, I looked at

NoSql, which allows for much flexibility and uses a JSON-like layout. This inspired me to

look at JSON and how I could use it to store and send data. Below are some example data:

Figure 2: Sample JSON chain data

 1. {
 2. timestamp: 1,
 3. lastHash: '-----',
 4. hash: 'hash-one',
 5. data: [],
 6. nonce: 0,
 7. difficulty: 3
 8. },
 9. {
10. timestamp: 1681570077951,
11. lastHash: 'hash-one',
12. hash: '23f0700aafa46fd9151addb5cd3ac09bac420c4858370df3949cc02ce571e7e7',
13. data: [[Object], [Object]],
14. nonce: 4,
15. difficulty: 2
16. },
17. {
18. timestamp: 1681570126081,
19. lastHash: '23f0700aafa46fd9151addb5cd3ac09bac420c4858370df3949cc02ce571e7e7',
20. hash: '4c551ce1610e626b4b91449231d6288de1b40ad11be34a8c08c4abd9397e75cf',
21. data: [[Object], [Object]],
22. nonce: 2,
23. difficulty: 1
24. },
25. {
26. timestamp: 1681570348330,
27. lastHash: '4c551ce1610e626b4b91449231d6288de1b40ad11be34a8c08c4abd9397e75cf',
28. hash: '316e2b990bf066c8e21a9d13300d9cc4291e18fd14c8362ba3cb113ecc6990d2',
29. data: [[Object], [Object]],
30. nonce: 1,
31. difficulty: 0
32. }
33.]

Endpoints Summary

The backend API uses numerous endpoints to give the front-end its functionality. Most of

these endpoints can be broken down into the following subcategories:

▪ History Endpoints

▪ Transaction Endpoints

▪ Wallet Endpoints

▪ Mine Endpoints

▪ Block Endpoints

The endpoints used for retrieving item or wallet history from the chain fall into the history

endpoints subcategory. These endpoints do not write in any way to the chain and, instead,

only retrieve from the chain.

The place bid, create auction, reinitiate auction, end auction, close auction, and transact

endpoints are all transaction endpoints. These endpoints function by taking details inputted

by a user from the front-end, sending requests to the backends running API, and using the

API to write to the chain. The sent transactions are then added to the transaction pool.

 8

The wallet endpoints are the Wallet, Wallet generate mnemonic, my wallet address and wallet

info endpoints. The wallet endpoint handles the submission of a previously generated phrase

to derive a wallet, and the generation endpoint is for when a user has no valid wallet or

phrase. My wallet address and info endpoints are used purely to retrieve a user’s current

wallet key for use in transactions or to allow the user to identify themselves on the chain.

The mine endpoints comprise the transaction pool and mine transactions endpoints. These are

the only two endpoints interacting with the pool and are the gap between valid and invalid

data on the chain. The transaction pool endpoint views what transactions are currently in the

pool. The mine transaction endpoint strobes the functions which validate the pool, and upon

validation, transactions will be added to the chain.

Finally, there are the block endpoints. These are used to show the blocks on the chain as

readable data in JSON format. These are the blocks, block's length and block's id endpoints.

These are used to display the entire chain data, return the chain's total length and retrieve

slices of the overall chain, respectively. The known-addresses endpoint could fall into the

history endpoint; however, it better fits here as it returns data from the current iteration of the

chain.

Front-end
The front end became more complex in some ways than the back end. When I started the

project, I knew I wanted to use React. This was mostly because I wanted to gain experience

with it as a library; however, my understanding of React needed to be corrected in hindsight.

My initial research led me to believe it was just a software library used to make front-end

components, but due to the open-source nature of node and NPM, it has evolved into

something more akin to an umbrella of extensions and parts. Upon this realisation, I settled

on using the following React libraries:

▪ react

▪ react-bootstrap

▪ react-copy-to-clipboard

▪ react-dom

▪ react-router-bootstrap

▪ react-router-dom

In this project, React highlighted one of the major disadvantages of JavaScript. JavaScript,

having started as a scripting language, is extremely basic. Node builds upon this to make it

more compatible with desktop platforms. Nevertheless, it has a different level of large,

standardised libraries than C++ has. The six packages outlined above were purely just for

react front-end.

1. React is a popular JavaScript library for building user interfaces. It is a declarative,

efficient, and flexible library that allows developers to easily build complex and

dynamic web applications. React's key feature is its ability to manage an application's

state, making it easier to build responsive and interactive user interfaces. In addition,

it uses a virtual DOM to update the UI efficiently and minimise the number of DOM

operations required. (React, n.d.)
2. React-Bootstrap is a popular UI library for building responsive and mobile-first web

applications using React. It provides a set of pre-built UI components that are easy to

 9

use and customise, including buttons, forms, modals, and more. React-Bootstrap also

supports accessibility features like keyboard navigation and screen reader support,

making it a great choice for building accessible web applications. (React-Bootstrap ·
React-Bootstrap Documentation, n.d.)

3. React-Copy-to-Clipboard is a small and simple library that provides a React

component for copying text to the clipboard. It is a useful tool for creating copy-to-

clipboard functionality in your web applications, and it works across different

browsers and devices. With React-Copy-to-Clipboard, you can easily add a copy

button to any element in your application and enable users to copy text quickly with

just one click. (React-Copy-to-Clipboard - Npm, n.d.)
4. React-DOM is a package that provides a way to render React components to the

browser's DOM (Document Object Model). It is a core part of the React library and is

used to render and manage the application's state in the browser. React-DOM

provides a simple API for working with the DOM and is optimised for performance

and speed.

5. React-Router-Bootstrap is a package that provides integration between React-Router

and React-Bootstrap. It allows you to easily create links and navigation elements in

your web applications using Bootstrap styling and layout. With React-Router-

Bootstrap, you can create dynamic and responsive navigation menus that work

seamlessly with React-Router. (React-Router-Bootstrap - Npm, n.d.)
6. React-Router-DOM is a popular package for routing in React applications. It provides

a declarative API for defining routes and navigating between them. React-Router-

DOM supports dynamic routing, lazy loading of components, and server-side

rendering, making it a powerful tool for building complex web applications. It is also

easy to integrate with other React libraries and UI frameworks.

In summary, React is the base package produced by Facebook, React copy to clipboard, and

React DOM extend its base functionality, but to make it more aesthetically pleasing, react-

bootstrap is used. This means components can be routed together with react-router, but due to

its incompatibility with bootstrap and DOM, it needs react-router-bootstrap and react-router-

dom. Some of these packages, like react-router-bootstrap, aren't explicitly called or imported

but are used when the web app is compiled.

Front-end Components

Several components were written to be used throughout the application. Some more

important ones are used, such as the navbar, newwalletphrase, addressbook and blocks

components. React-router is used to map the routes to each Component.

Navbar

The navbar component is used throughout the front-end to allow users to navigate between

numerous parts of the project. The components it can access are defined in a router

component, and the endpoint is rendered by simply redirecting to the correct GUI page. A no

inputs version also exists to prevent users from accessing other pages before login.

newWalletPhrase

The new wallet phrase component is a great example of linking components to a single page.

The no input navbar is used along with the walletMnemonic and the phraseBanner

components. The walletMnemonic Component is triggered when a user asks for a new wallet.

The Component calls to the backend for a phrase which is then rendered to the front end for

use. The following code does this:

 10

 1. import React, { useState, useEffect } from 'react';
 2. import { Button } from 'react-bootstrap';
 3. import { CopyToClipboard } from 'react-copy-to-clipboard';
 4.
 5. function WalletMnemonic() {
 6. const [walletPhrase, setWalletPhrase] = useState('');
 7.
 8. useEffect(() => {
 9. fetch('/api/wallet-mnemoic-generate')
10. .then(response => response.json())
11. .then(data => setWalletPhrase(data));
12. }, []);
13.
14. const handlePassphraseSubmit = () => {
15. fetch(`${document.location.origin}/api/wallet`, {
16. method: 'POST',
17. headers: { 'Content-Type': 'application/json' },
18. body: JSON.stringify({ phrase: walletPhrase })
19. })
20. .then(() => window.location.href = "/");
21. }
22.
23. return (
24. <div className="wallet-phrase">
25. <div style={{ columnCount: 4 }}>
26. {walletPhrase.split(' ').map((word, index) => (
27. <div key={index}>{word}</div>
28.))}
29. </div>
30.

31. <CopyToClipboard text={walletPhrase}>
32. <Button variant="danger" size="sm" style={{ margin: '10px' }}>Copy</Button>
33. </CopyToClipboard>
34. <Button variant="danger" size="sm" onClick={handlePassphraseSubmit}>Login with
this phrase</Button>
35. </div>
36.);
37. }
38.
39. export default WalletMnemonic;

Figure 3:Wallet Mnemonic code

The copy to clipboard library is also used here to make it easier for users to note their new

Wallet. The phrase banner component is the last Component called for the new wallet phrase

code, and it simply renders a warning message to the user to copy down their Wallet, or they

cannot recover their account.

addressBook

The addressBook Component queries the known addresses endpoint for any addresses seen

on the chain. There is only a little going on with this endpoint other than the basic math it

does to result in pagination for the known addresses. These are rendered in card components

with a copy button present to make using the data on the page easier.

Blocks

Although similar to the known addresses component, slightly more occurs on the blocks

component. Examining the following code:

 1. import React, { Component } from 'react';
 2. import { Button } from 'react-bootstrap';
 3. import Block from './Block';
 4. import NavBar from "../Usability/Navbar";

 11

 5.
 6. class Blocks extends Component {
 7. state = { blocks: [], paginatedId: 1, blocksLength: 0 };
 8.
 9. componentDidMount() {
10. fetch(`${document.location.origin}/api/blocks/length`)
11. .then(response => response.json())
12. .then(json => this.setState({ blocksLength: json }));
13.
14. this.fetchPaginatedBlocks(this.state.paginatedId)();
15. }
16.
17. fetchPaginatedBlocks = paginatedId => () => {
18. fetch(`${document.location.origin}/api/blocks/${paginatedId}`)
19. .then(response => response.json())
20. .then(json => this.setState({ blocks: json }));
21. }
22.
23. render() {
24. console.log('this.state', this.state);
25.
26. return (
27. <div>
28. <NavBar />
29.

30. <h3>Blocks</h3>
31. <hr />
32.

33. <div>
34. {
35. [...Array(Math.ceil(this.state.blocksLength/5)).keys()].map(key => {
36. const paginatedId = key+1;
37.
38. return (
39.
40. <Button bsSize="small" variant="danger">
41. {paginatedId}
42. </Button>{' '}
43.
44.)
45. })
46. }
47. </div>
48. {
49. this.state.blocks.map(block => {
50. return (
51. <Block key={block.hash} block={block} />
52.);
53. })
54. }
55. </div>
56.);
57. }
58. }
59.
60. export default Blocks;

Figure 4: Blocks Component

The code shown works by taking the entire chain length and cutting it up into sections and

then querying another endpoint for each section and rendering the returned data in a block

component. Each block component checks what form of transaction is present within it and

then renders a suitable transaction layout to match the transaction.

 12

Conformance To Project Brief
Looking back on the functional specifications metrics for project success, I have achieved

nearly everything in the FURPS and metrics of project success section.

Functionality

Functionality in terms of FURPS defines all of the functions which the software should be

able to perform. All of these aims were met in both the backend and front-end functionality.

Blockchain Functionality Within Project

Facilitate the connection between all nodes Success

Perform automatic node registry Success

Store user-made transactions on the chain Success

Store unverified transactions in a transaction

pool

Success

Allow for mining a transaction pool to add its

transactions to the chain.

Success

Automatically clear the valid transactions from

the pool

Success

Automatically broadcast changes to the pool or

chain

Success

Allow for the access or creation of valid wallets

to the chain

Success

Use wallet keys to sign transactions as valid Success

Web Application Functions within the Project

Allows a user to log in with a previous wallet

or generate a new one by interfacing with API

Success

Allow a user to create an auction item Success

Allow a user to place a bid on an existing item Success

Allow a user to send another user chain

currency

Success

Allow a user to close, reinitiate or end an

auction on the chain

Success

Allow a user to search a wallet for its history Success

Allow a user to search an auction item for its

history

Success

Allow a user to mine transactions on their

machine

Success

Usability

Usability sets out the ease of use and access the software should maintain. All of these were

achieved.

The software should utilise a GUI to

communicate data and changes to the user.

Success

Buttons should be used to make navigation and

functionality easier for a user.

Success

 13

The software should be able to run on a desktop Success

The software should ideally have documentation

if a user wishes to modify or fork the code.

Success

The system should ideally run as a portable exe Success

The system GUI should ideally be compatible

with multiple desktop platforms or browsers.

Success

Pagination should make large amounts of data

easier to navigate

Success

Reliability

Regarding reliability, the application achieved all the milestones I had set out to achieve.

The system should use consensus to verify that

the incoming chain is valid

Success

Cryptography should be used to ensure data

integrity

Success

The system should have low downtimes due to

its P2P structure

Success

The system should not store any user authentication

details for security
Success

The system should utilise error-handling methods

correctly
Success

Utilise a proof of work system for mining Success

Performance

Performance defines the speed and efficiency of the software under the hood. Measuring the

software's usage on my computer showed that the following was achieved:

The system should be low in resource

consumption

Success

The system should be able to run on low-spec

devices

Success

The system should be able to run a valid node in

a web environment for demonstration purposes.

Success

Mining a block should take around 1000

milliseconds or so on a new chain

Success

Sync chains and pools automatically Success

Supportability

Supportability should define how broadly the system is supported by other hardware or

software, e.g. a more commonly unused browser or operating system. Having written the

project in JavaScript, the following milestones have been achieved.

 14

The system should use standard technologies

like JavaScript, which various browsers and

web technologies should widely support.

Success

The system should be well documented to make

changes or improvements easier.
Success

The system should use a clear folder structure to

allow users to navigate its code base.
Success

Reflection
In the following section, I will go over the project as an experience overall and how it came

to exist in its current state. Then, I will go over some of the things I wish I had managed to

implement and some design hurdles.

Personal Experience

Going into this project, I initially intended to build a blockchain-based dApp. I originally had

my mind on a chat application as there are obvious ways that a usually centralised form of

software would benefit from a decentralised form of implementation. Unfortunately, the only

information I had from the original project assignment sheet was that I had been assigned "A

blockchain-based Dapp".

Upon meeting with my supervisor, it was explained to me that I had to make an auction

system on HyperLedger Fabric. I did my due diligence to research any potential technology

before deciding to use it. Since I had only begun learning Ethereum's solidity, I did not see it

as much of an issue.

I tried booting the software and working with it and was plagued with issues and problems

and received little to no help from the numerous tutorials online. Finally, I contacted Ewan

Duff, who explained he had similar problems.

Figure 5: Conversation with Ewan Duff

The first set of issues I hit was with node. Node is the main software, NPM is its package

manager, NVM is its version manager, and NPX is its package manager's privileged

 15

execution function. Node was complaining that parts of the code were missing in the fabric

examples repository I was trying to use. Upon fixing these, I reran the software and was hit

with signing issues regarding the certificates and ports.

Thankfully I managed to get into the Hyperledger Fabric Discord community. I had

previously put in a post asking for help and finally began to get some replies:

Figure 6: Hyperledger Discord

 16

Figure 7: Conversation with Kentbull

I was constantly going back to this thread with new problems. Thankfully I could fix some of

them myself until, eventually, the user by the name of Kent Bull was kind enough to reach

out to me privately with a fantastic set of pointers. Kent's knowledge of Fabric was extensive.

He introduced me to the concept of Fabric CA's, which had yet to be mentioned in brief. CA's

are a way to allow the underlying cryptographic components in Fabric to be modular and for

new organisations and users to register with them.

Figure 8: Cert Errors

Note the time displayed at the top of the screenshot. I was nearly five months deep into the

project with little to show for it. Nonetheless, I moved forward with his guidance and help

and managed to get some parts of a CA test network spun up. At this point, I had gotten much

further than Ewan before me, having spanned up two test networks and some aspects of a

fabric CA system. Unfortunately, upon moving through Kent's instructions, I was plagued

with new issues:

 17

Figure 9: Port Errors

I tried changing the port numbers used in the underlying script files, which failed to work, as

did the other repairs I had attempted.

During this time, I had been trying to get my project changed with it constantly blocked

behind closed doors, eventually resulting in my escalation of the issue to the department

head. Finally, around December, I decided that it did not make sense for me to wait any

further, and I had to find my way forward with this project.

I did consult Martin Harrigan, the college's expert in blockchain technologies, and he also put

his hands up, saying he couldn't offer me support as it was a technology, he wasn't familiar

with.

It's important to mention all of this because it thoroughly affected the output of my project.

Even though I began work on a backup solution in December, I was still left with all my

documentation to redo and needed a concrete idea of what would happen going forward with

the project.

There were two main issues with my solution going forward and how I decided to build it.

First, I needed something to handle internode communications effectively to improve socket

programming. I chose Redis initially to do this but having installed WSL(Windows Linux

Subsystem) on my computer, I could not make it work. Redis ran perfectly, but my host

system could not communicate with it. I then decided to move to PubNub.

PubNub worked significantly better with plenty of examples online. I had most of the chain's

basic backend built and ran some tests, such as a basic chain replacement:

Figure 10: Test replacement chain

Till this point in the project, the backend I had built was more akin to a cryptocurrency, and I

needed to implement auction functionality. The first place I knew this would need to occur is

in the transaction Maps. So I began by implementing an auction-structured transaction Map.

However, this introduced me to one of the key issues with PubNub in the following code:

 18

 1. const PubNub = require('pubnub');
 2.
 3. // Sets the API keys for access to PubNub
 4. const credentials = {
 5. publishKey: 'pub-c-f0d1aece-b8ce-424d-93c5-057ce943ca34',
 6. subscribeKey: 'sub-c-9586aba2-bcae-419c-a342-c7556ac00daf',
 7. secretKey: 'sec-c-NzNiNGUzN2UtN2U3Yi00MzIyLWE2NDUtYWVjNTlmNjA2YWIx'
 8. };
 9.
 10. // Sets up our default channels to be used by the system to allow for transactions
 11. const CHANNELS = {
 12. TEST: 'TEST',
 13. BLOCKCHAIN: 'BLOCKCHAIN',
 14. TRANSACTION: 'TRANSACTION'
 15. };
 16.
 17. class PubSub {
 18.
 19. constructor({ blockchain, transactionPool, wallet }) {
 20.
 21. this.blockchain = blockchain;
 22.
 23. this.transactionPool = transactionPool;
 24.
 25. this.wallet = wallet;
 26.
 27. this.pubnub = new PubNub(credentials);
 28.
 29. this.pubnub.subscribe({ channels: Object.values(CHANNELS) });
 30.
 31. this.pubnub.addListener(this.listener());
 32.
 33. }
 34.
 35. handleMessage(channel, message){
 36.
 37. console.log(`Message recieved. Message is: ${message}. Channel is:
${channel}`);
 38.
 39. const parsedMessage = JSON.parse(message);
 40.
 41. switch(channel){
 42. case CHANNELS.BLOCKCHAIN:
 43. this.blockchain.replaceChain(parsedMessage);
 44. break;
 45. case CHANNELS.TRANSACTION:
 46. if(!this.transactionPool.existingTransaction({ inputAddress:
this.wallet.publicKey})){
 47. this.transactionPool.setTransaction(parsedMessage);
 48. }
 49. break;
 50. default:
 51. return;
 52. }
 53.
 54. if (channel === CHANNELS.BLOCKCHAIN){
 55. this.blockchain.replaceChain(parsedMessage);
 56. }
 57. }
 58.
 59. listener() {
 60.
 61. return {

 19

 62.
 63. message: messageObject => {
 64.
 65. const { channel, message } = messageObject;
 66.
 67. //console.log(`Message received. Channel: ${channel}. Message:
${message}`);
 68.
 69. this.handleMessage(channel, message);
 70. }
 71. };
 72. }
 73.
 74. publish({ channel, message }) {
 75. this.pubnub.publish({
 76. channel,
 77. message,
 78. meta: {
 79. uuid: this.pubnub.getUUID()
 80. }
 81. });
 82.
 83.
 84. }
 85.
 86. broadcastChain(){
 87. this.publish({
 88. channel: CHANNELS.BLOCKCHAIN,
 89. message: JSON.stringify(this.blockchain.chain)
 90. });
 91. }
 92.
 93. broadcastTransaction(transaction) {
 94. this.publish({
 95. channel: CHANNELS.TRANSACTION,
 96. message: JSON.stringify(transaction)
 97. });
 98. }
 99.
100. }
101.
102. module.exports = PubSub;

Figure 11: Original P2P class

This is the version of the code I used in a previous commit. The issue with this code is that after

implementing auctions, the individual chain was too large to send over HTTP requests, with the code

giving 413 and 414 errors. Initially, I had solved these using a method I encountered online called

message chunking. Unfortunately, I couldn't find any example of this code, but I had a reasonable

idea of how it worked. I then moved on to build everything else, the bidding, wallets with bip39 and

different endpoints for various auction functions. I had even started a lot of the GUI before this

resurfaced as a problem. In the end, I solved it using the following code:

 1. const { json } = require('body-parser');
 2. const PubNub = require('pubnub');
 3.
 4. // Sets the API keys for access to PubNub
 5. const credentials = {
 6. publishKey: 'pub-c-cfc32bfe-8f42-4848-8678-53d06f894bc9',
 7. subscribeKey: 'sub-c-61d414a4-c78e-43af-82eb-7e799ba3080b',
 8. secretKey: 'sec-c-YzFiYWUzYTMtY2QyOC00YzEyLTk3ZWEtNDU4YjY0MjYyMTc2'
 9. };
 10.
 11. // Sets up our default channels to be used by the system to allow for transactions

 20

 12. const CHANNELS = {
 13. TEST: 'TEST',
 14. BLOCKCHAIN: 'BLOCKCHAIN',
 15. TRANSACTION: 'TRANSACTION',
 16. PEERS: 'PEERS'
 17. };
 18.
 19. class PubSub {
 20. constructor({ blockchain, peers, transactionPool, wallet }) {
 21. this.blockchain = blockchain;
 22. this.transactionPool = transactionPool;
 23. this.peers = peers;
 24. this.wallet = wallet;
 25. this.heldChain = [];
 26. this.heldPeers = [];
 27. this.pubnub = new PubNub(credentials);
 28.
 29. this.pubnub.subscribe({ channels: Object.values(CHANNELS) });
 30. this.pubnub.addListener(this.listener());
 31. }
 32.
 33. listener() {
 34. return {
 35. message: messageObject => {
 36. const { channel, message } = messageObject;
 37.
 38. let clearFlag = false;
 39.
 40. console.log(`Message received. Channel: ${channel}. Message:
${JSON.stringify(message)}`);
 41.
 42. switch(channel) {
 43.
 44. case CHANNELS.BLOCKCHAIN:
 45.
 46. if (message !== "chain end") {
 47. this.heldChain.push(message);
 48. } else if (this.heldChain[0] !== undefined) {
 49. console.log("chain end added to held chain");
 50. this.heldChain.push(message);
 51. clearFlag = true;
 52. }
 53.
 54. // Sort the messages by their timestamps before adding them to the
heldChain
 55. this.heldChain.sort((a, b) => {
 56. const aTimestamp = new Date(a.timestamp);
 57. const bTimestamp = new Date(b.timestamp);
 58. return aTimestamp - bTimestamp;
 59. });
 60.
 61. console.log(JSON.stringify(this.heldChain));
 62.
 63. const organisedChain = this.heldChain.map(message => message.payload);
 64.
 65. console.log("organised chain" + JSON.stringify(organisedChain));
 66.
 67. this.blockchain.replaceChain(organisedChain, true, () => {
 68. this.transactionPool.clearBlockchainTransactions(
 69. { chain: organisedChain }
 70.);
 71. });
 72.
 73. break;
 74. case CHANNELS.TRANSACTION:
 75.

 21

 76. let parsedMessage = JSON.parse(message);
 77.
 78. if (parsedMessage.input.address !== this.wallet.publicKey){
 79. this.transactionPool.setTransaction(parsedMessage);
 80. } else {
 81. console.log('TRANSACTION broadcast received from self, ignoring..');
 82. }
 83. break;
 84.
 85. case CHANNELS.PEERS:
 86.
 87. this.heldPeers.push(message);
 88.
 89. console.log("Held Peers array" + JSON.stringify(this.heldPeers));
 90.
 91. this.heldPeers.sort((a, b) => {
 92. const aTimestamp = new Date(a.timestamp);
 93. const bTimestamp = new Date(b.timestamp);
 94. return aTimestamp - bTimestamp;
 95. });
 96.
 97. const organisedPeers = this.heldPeers.map(message => message.payload);
 98.
 99. console.log("Peer array " + JSON.stringify(organisedPeers));
100.
101. this.peers.updatePeers(organisedPeers);
102.
103. break;
104.
105. default:
106. return;
107. }
108.
109. if (clearFlag === true) {
110. this.heldChain = [];
111. }
112. }
113. }
114. }
115.
116.
117. peerPublish({ channel, message }){
118.
119. const getSize = message => {
120. const aString = JSON.stringify(message);
121. return (new TextEncoder().encode(aString)).length;
122. };
123.
124. const messageSize = getSize(message);
125.
126. console.log(`\n Publishing message of size ${messageSize} bytes to channel
${channel} \n`);
127.
128. const regex = /\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}/;
129. const ipAddress = message.match(regex)[0];
130.
131. console.log(ipAddress);
132.
133. const timestamp = new Date().toISOString();
134.
135. this.pubnub.publish({
136. channel: channel,
137. message: {
138. timestamp: timestamp,
139. payload: ipAddress
140. }

 22

141. });
142. }
143.
144. TransactionPublish({ channel, message }) {
145. const getSize = message => {
146. const aString = JSON.stringify(message);
147. return (new TextEncoder().encode(aString)).length;
148. };
149. const messageSize = getSize(message);
150.
151. console.log(`\n Publishing message of size ${messageSize} bytes to channel
${channel} \n`);
152.
153. this.pubnub.publish({
154. channel,
155. message,
156. });
157. }
158.
159. blockchainPublish({ channel, message }) {
160. const getSize = message => {
161. const aString = JSON.stringify(message);
162. return (new TextEncoder().encode(aString)).length;
163. };
164. const messageSize = getSize(message);
165.
166. console.log(`\n Publishing message of size ${messageSize} bytes to channel
${channel} \n`);
167.
168. const timestamp = new Date().toISOString(); // get the current timestamp in
ISO format
169.
170. this.pubnub.publish({
171. channel: channel,
172. message: {
173. timestamp: timestamp,
174. payload: message
175. }
176. });
177. }
178.
179. broadcastChain() {
180.
181. console.log("Chain Length is: " + this.blockchain.chain.length + "\n");
182.
183. for(let chainNumber = 0, chainItem; chainNumber <
this.blockchain.chain.length; chainNumber++){
184.
185. chainItem = this.blockchain.chain[chainNumber];
186.
187. this.blockchainPublish({
188. channel: CHANNELS.BLOCKCHAIN,
189. message: chainItem
190. });
191.
192. console.log("Message sent is: " + JSON.stringify(chainItem) + "\n");
193.
194. }
195.
196. }
197.
198.
199. broadcastTransaction(transaction) {
200.
201. this.TransactionPublish({
202. channel: CHANNELS.TRANSACTION,

 23

203. message: JSON.stringify(transaction)
204. });
205. }
206.
207. broadcastPeerMembership(peerRegistration) {
208.
209. this.peerPublish({
210. channel: CHANNELS.PEERS,
211. message: JSON.stringify(peerRegistration)
212. });
213. }
214. }
215.
216. module.exports = PubSub;

Figure 12: Final P2P class

My solution to this issue was to break the chain into individual messages, each being sent

with a timestamp. This meant each part of the chain left in order from one node, and when

received by another node, although disorganised, it could be reassembled using timestamps.

From there, the reassembled chain could be put through the consensus algorithms to verify

that the chain was valid. Of course, implementing the different auction maps damaged the

balancing functionality, but the project's focus was not a cryptocurrency, so this was fine for

me.

If I had had more time, I would have used the first few months to learn socket programming,

and it would have helped mitigate all of the issues in the P2P functionality. It also would

mean the P2P API would not require a paywall.

Personal Learning

I learned much about Hyperledger fabric during this project even though I could not make it

work. I’m significantly more proficient in JavaScript, having worked with web and desktop

solutions. I have a much greater understanding of JavaScript’s packages and restful APIs. I

have learned much more about blockchain technologies, how they work under the hood, and

why they work.

 I have also learned much more about React, a hugely popular library, so getting experience

with it was important. I learned a lot about using NPM to handle upstream conflicts, a

completely new concept to me. I learned a lot about modern-day cryptographic solutions and

where it is going as a field. Finally, I learned much about the full-stack development process

and how to build many interesting components frequently used in modern software

development.

I learned a lot about politics and how to handle many issues in that field. This was also my

first time using any form of unit testing, which was a very informative experience.

Project Review
Once I got going on this project, I enjoyed it. I enjoyed working through the different parts of

modern-day software development and seeing the amazing tools at my disposal to build other

interesting project ideas I have. I am really happy with how the finished product turned out. I

like the desktop implementation, and the BIP39 authentication is something I am especially

proud of. I am very happy that I also managed to deploy the code to Heroku. My

documentation turned out quite well also, and I'm happy with its format and

comprehensiveness.

 24

If I were to do this project again, I would likely use the Ethereum chain as I had planned. I

would purchase a compiler server beforehand to allow me to compile for MacOS and Linux.

It's annoying that the electron-builder doesn't include that functionality out of the box. Also,

I'd like to redo this kind of project in Rust. A memory-safe language would be very beneficial

for this form of system.

I would also escalate the problems I had to the department head sooner. Other students did

not face issues changing the project as I did, and I could have completed more if I had. There

are a lot of interesting ideas and approaches I wanted to explore, which I needed more time

to.

Acknowledgements
I want to thank Richard Butler, Keara Barrett, Joseph Keogh and Christopher Staff for their

assistance with numerous technical and documentation-based questions and aspects of this

project. With them, the various aspects of this project, especially the documentation, got to

where it has.

I’d especially like to thank Martin Harrigan for taking the time to answer my questions

regarding numerous technical aspects of the project. His expertise was an invaluable resource

for me and helped me navigate technical components like user authentication and chain

indexing.

I want to thank the individual who uses the username Kent Bull in the HyperLedger discord

server. He was a gold mine of information and direction regarding the early stages of this

project when I was using HyperLedger and was kind enough to communicate with me across

an 8-hour time gap from Utah.

I would also like to thank Ewan Duff, last year's student, who suffered nearly identical

problems to me with this project. Between our conversation over LinkedIn and his

documentation and repository from last year, I gained fantastic insight into routes to take with

this project in its early stages.

I want to thank Ciaran Nolan, Jude Carey and Mark Rodgers in Irish Rail. I had the time to

upskill myself during my internship, so I was better prepared for this project, especially in

intermediate JavaScript. Their advice and guidance will last me a lifetime in this industry.

I want to thank the 2022 and 2023 software development students, IT management students

and cybercrime students for making my time in SETU memorable and for their help and

support throughout the project and the college experience overall. From enduring Covid-19 to

the stresses of fourth year, they made it bearable.

I'd also like to thank my social circle external to college, such as Kelly Webster, Courtney

Pearse, Sadhbh Kenny, Luke Burke, Yorick Van Hazendonk and Dane Hegarty. Their

consistent comradery and support were invaluable.

I want to thank Judge Roy Beans and Premiere Hygiene staff, especially Vivian Caroll, Paul

Dowling, Sean Keogh, Ken Herbert and Richie Curry. I cannot thank them enough for being

a source of humour, employment, and mentorship.

 25

I want to thank my family, without whom I would never have made it to third-level

education. Their continuing support and help have been instrumental in getting me where I

needed to be.

Finally, I would like to thank my girlfriend, who was a constant source of encouragement,

support and advice during this course of this year. She was fantastic, from offering

suggestions for documentation to enabling my stress eating.

 26

References
bip39 - npm. (n.d.). Retrieved April 16, 2023, from https://www.npmjs.com/package/bip39

bitcoinjs/bip39: JavaScript implementation of Bitcoin BIP39: Mnemonic code for generating

deterministic keys. (n.d.). Retrieved April 16, 2023, from https://github.com/bitcoinjs/bip39

hdkey - npm. (n.d.). Retrieved April 16, 2023, from https://www.npmjs.com/package/hdkey

Multi Platform Build - electron-builder. (n.d.). Retrieved April 15, 2023, from

https://www.electron.build/multi-platform-build.html

React. (n.d.). Retrieved April 16, 2023, from https://react.dev/

React-Bootstrap · React-Bootstrap Documentation. (n.d.). Retrieved April 16, 2023, from

https://react-bootstrap.github.io/getting-started/introduction

react-copy-to-clipboard - npm. (n.d.). Retrieved April 16, 2023, from

https://www.npmjs.com/package/react-copy-to-clipboard

react-router-bootstrap - npm. (n.d.). Retrieved April 16, 2023, from

https://www.npmjs.com/package/react-router-bootstrap

What are BIP39, BIP32, and BIP44? - Vault12. (n.d.). Retrieved April 15, 2023, from

https://vault12.com/securemycrypto/crypto-security-basics/what-is-bip39/

